Step of Proof: adjacent-append
11,40
postcript
pdf
Inference at
*
2
2
2
1
1
I
of proof for Lemma
adjacent-append
:
1.
T
: Type
2.
x
:
T
3.
y
:
T
4.
L1
:
T
List
5.
u
:
T
6.
v
:
T
List
7. 0 < ||
L1
||
8. 0 < (||
v
||+1)
9.
x
= last(
L1
)
10.
y
=
u
y
= [
u
/
v
][(((||
L1
|| - 1)+1) - ||
L1
||)]
latex
by ((RWO "select_cons_hd" 0)
CollapseTHEN (Auto'))
latex
C
.
Definitions
l
[
i
]
,
P
Q
,
P
&
Q
,
x
:
A
B
(
x
)
,
P
Q
,
P
Q
,
n
+
m
,
n
-
m
,
||
as
||
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
A
B
,
,
last(
L
)
,
t
T
,
#$n
,
s
=
t
,
a
<
b
,
type
List
,
Type
Lemmas
iff
wf
,
rev
implies
wf
,
select
cons
hd
,
length
wf1
origin